Paper: Characterization of Ammonia, Methane, and Nitrous Oxide Emissions from Concentrated Animal Feeding Operations in Northeastern Colorado — CIRES


Here’s the abstract (Scott J. Eilerman, Jeff Peischl, J. Andrew Neuman, Thomas B. Ryerso, Kenneth C. Aikin, Maxwell W. Holloway, Mark A. Zondlo, Levi M. Golston, Da Pan, Cody Floerchinger, and Scott Herndon):

Atmospheric emissions from animal husbandry are important to both air quality and climate, but are hard to characterize and quantify as they differ significantly due to management practices and livestock type, and they can vary substantially throughout diurnal and seasonal cycles. Using a new mobile laboratory, ammonia (NH3), methane (CH4), nitrous oxide (N2O), and other trace gas emissions were measured from four concentrated animal feeding operations (CAFOs) in northeastern Colorado. Two dairies, a beef cattle feedlot, and a sheep feedlot were chosen for repeated diurnal and seasonal measurements. A consistent diurnal pattern in the NH3 to CH4 enhancement ratio is clearly observed, with midday enhancement ratios approximately four times greater than nighttime values. This diurnal pattern is similar, with slight variations in magnitude, at the four CAFOs and across seasons. The average NH3 to CH4 enhancement ratio from all seasons and CAFOs studied is 0.17 (+0.13/–0.08) mol/mol, in agreement with statewide inventory averages and previous literature. Enhancement ratios for NH3 to N2O and N2O to CH4 are also reported. The enhancement ratios can be used as a source signature to distinguish feedlot emissions from other NH3 and CH4 sources, such as fertilizer application and fossil fuel development, and the large diurnal variability is important for refining inventories, models, and emission estimates.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s